Dataset Images









Code
img_norm_cfg = dict(
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
albu_train_transforms = [
dict(
type='OneOf',
transforms=[
dict(type='Flip',p=1.0),
dict(type='RandomRotate90',p=1.0)
],
p=0.5),
dict(type='RandomResizedCrop',height=512, width=512, scale=(0.5, 1.0), p=0.5),
dict(type='RandomBrightnessContrast',brightness_limit=0.1, contrast_limit=0.15, p=0.5),
dict(type='HueSaturationValue', hue_shift_limit=15, sat_shift_limit=25, val_shift_limit=10, p=0.5),
dict(type='GaussNoise', p=0.3),
dict(
type='OneOf',
transforms=[
dict(type='Blur', p=1.0),
dict(type='GaussianBlur', p=1.0),
dict(type='MedianBlur', blur_limit=5, p=1.0),
dict(type='MotionBlur', p=1.0)
],
p=0.1)
]
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='LoadAnnotations', with_bbox=True),
dict(type='Resize', img_scale=(1024, 1024), keep_ratio=True),
dict(type='RandomFlip', flip_ratio=0.0),
dict(
type='Albu',
transforms=albu_train_transforms,
bbox_params=dict(
type='BboxParams',
format='pascal_voc',
label_fields=['gt_labels'],
min_visibility=0.0,
filter_lost_elements=True),
keymap={
'img': 'image',
'gt_bboxes': 'bboxes'
},
update_pad_shape=False,
skip_img_without_anno=True
),
dict(type='Normalize', **img_norm_cfg),
dict(type='Pad', size_divisor=32),
dict(type='DefaultFormatBundle'),
dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']),
]
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(
type='MultiScaleFlipAug',
img_scale=(1024, 1024),
flip=True, # <-- True=TTA
flip_direction=['horizontal', 'vertical', 'diagonal'],
transforms=[
dict(type='Resize', keep_ratio=True),
dict(type='RandomFlip'),
dict(type='Normalize', **img_norm_cfg),
dict(type='Pad', size_divisor=32),
dict(type='ImageToTensor', keys=['img']),
dict(type='Collect', keys=['img']),
])
]